WOE與SAS Miner

SHAN LIN
2 min readAug 25, 2020

--

最近學做WOE binning,筆記如下

WOE Binning是什麼呢?

Weight of Evidence(WOE)就是把continuous variable轉成discrete!設定門檻(cutoff)把連續數字分成一組一組的bin,有點類似……把長短差不多的筷子放在一起,分成好幾綑

用在哪裡?

Credit Score Model的前置作業,把資料處理好再去下一步選擇variable

好處/壞處

好處是variable當中,有時會有把太大、太小、missing等不合理的值,binning能把這些outlier跟其他的值分開

壞處是不夠客觀,100個人有101種分法,每一組cutoff要取多少自己決定,每一位分析師做出來的都不同

公式怎麼算

Overview of the Interactive Grouping NodeWeight of Evidence

SAS Miner

Interactive Grouping可以視覺化每一組event count的數量,配合WOE值上升或下降趨勢,可以判讀WOE值對應變數之意義是否合理,原則為monotonic

白話文: 例如消費者拖欠付款的日子越久,欠債比例會越高,所以WOE會由左下往右上點上升,呈現遞增

注意!!!也有可能是由左上到右下的下降關係! 例如公司利潤/負債比例越高,表示公司發大財,欠債比例會越低,WOE值則遞減

調整binning時需注意event count/non event count,每個bin應至少有一個non-event

可以點選fine和coarce看細項和總體cutoff

參考Information value值,0.3以上就是很有預測能力的變數!

from: SAS Miner Document

Sign up to discover human stories that deepen your understanding of the world.

Free

Distraction-free reading. No ads.

Organize your knowledge with lists and highlights.

Tell your story. Find your audience.

Membership

Read member-only stories

Support writers you read most

Earn money for your writing

Listen to audio narrations

Read offline with the Medium app

--

--

SHAN LIN
SHAN LIN

Written by SHAN LIN

Data Analytics * Curiosity -I Write What You Don’t Find on Google || Article List: https://ppt.cc/fhjetx || LinkedIn: http://linkedin.com/in/shan-lin-0723

No responses yet

Write a response